论文标题
纠缠辅助连续变量测量的信息能力
The information capacity of entanglement-assisted continuous variable measurement
论文作者
论文摘要
本文致力于研究连续可变量子测量值的熵减少和纠缠辅助经典能力(信息增益)。这些数量是针对多模高斯测量通道明确计算的。为此,我们建立了测量熵降低的基本特性:在限制输入状态的第二瞬间,它被高斯状态最大化(为最大值提供了分析表达式)。在一种模式的情况下,详细研究了纠缠援助的增益。
The present paper is devoted to investigation of the entropy reduction and entanglement-assisted classical capacity (information gain) of continuous variable quantum measurements. These quantities are computed explicitly for multimode Gaussian measurement channels. For this we establish a fundamental property of the entropy reduction of a measurement: under a restriction on the second moments of the input state it is maximized by a Gaussian state (providing an analytical expression for the maximum). In the case of one mode, the gain of entanglement assistance is investigated in detail.