论文标题
在正式的简单理论中扎根occam的剃刀
Grounding Occam's Razor in a Formal Theory of Simplicity
论文作者
论文摘要
在“组合”计算模型的背景下,引入了一种形式的简单理论,该模型将计算视为构成彼此的迭代转化和组成活动。在算法信息等方面,简单性的常规度量被证明是对核心“对称性”特性的更广泛理解,构成此处定义为组成简单措施(COSM)的特殊情况。 这种COSM的理论扩展到了宇宙理论(组合简单度量的操作集),该理论涉及一起使用的多种简单措施。给定简单措施的向量,实体不是与个人简单值相关的,而是与帕累托(Pareto)最佳简单值矢量的“简单捆绑”相关联。 然后将宇宙和宇宙用作模式和多种模式理论的基础,以及模式系统中的层次结构和异乎寻常的理论。以一致的方式介绍了“连贯的双网络”交织层次结构和异乎码的认知系统概念的形式化。 这项调查的高水平最终结果是将OCCAM的剃须刀重新定义为:如有疑问,更喜欢简单捆绑包的假设,其简单捆绑包是最佳的,部分是因为这样做,这两个既可以通过构建相干双网络的允许和利益,这些网络构建了构成协调的和一致的多种层次和多样的层次和异性境界。
A formal theory of simplicity is introduced, in the context of a "combinational" computation model that views computation as comprising the iterated transformational and compositional activity of a population of agents upon each other. Conventional measures of simplicity in terms of algorithmic information etc. are shown to be special cases of a broader understanding of the core "symmetry" properties constituting what is defined here as a Compositional Simplicity Measure (CoSM). This theory of CoSMs is extended to a theory of CoSMOS (Combinational Simplicity Measure Operating Sets) which involve multiple simplicity measures utilized together. Given a vector of simplicity measures, an entity is associated not with an individual simplicity value but with a "simplicity bundles" of Pareto-optimal simplicity-value vectors. CoSMs and CoSMOS are then used as a foundation for a theory of pattern and multipattern, and a theory of hierarchy and heterarchy in systems of patterns. A formalization of the cognitive-systems notion of a "coherent dual network" interweaving hierarchy and heterarchy in a consistent way is presented. The high level end result of this investigation is to re-envision Occam's Razor as something like: When in doubt, prefer hypotheses whose simplicity bundles are Pareto optimal, partly because doing so both permits and benefits from the construction of coherent dual networks comprising coordinated and consistent multipattern hierarchies and heterarchies.