论文标题
在Sylvester溶液中用于退化特征值
On Sylvester solution for degenerate eigenvalues
论文作者
论文摘要
在本文中,我们介绍了Sylvester的公式用于具有退化特征值的系统与获得其分析溶液有关的系统。为了欣赏用途,我们包括其他两种形式的分析溶液,即绝热和马格努斯近似值。在量子力学中,schrödinger方程是一个数学方程式,它描述了物理系统随时间的演化,其中量子效应(例如波浪粒子二元性)很重要。该方程是用于研究量子机械系统的数学公式。就像纽顿法律控制对象的运动一样,施罗丁运动方程式也控制量子对象的运动。与对象的经典运动不同,量子现象运动的方程涉及轨迹的可能性。
In this paper we introduce the use of Sylvester's formula for systems with degenerate eigenvalues in relation to obtaining their analytical solutions. To appreciate the use we include two other forms of analytical solutions namely adiabatic and Magnus approximations. In quantum mechanics, the Schrödinger equation is a mathematical equation that describes the evolution over time of a physical system in which quantum effects, such as wave--particle duality, are significant. The equation is a mathematical formulation for studying quantum mechanical systems. Just like Newtons's laws govern the motion of objects, Schrödinger equations of motion also govern the motion of quantum objects. Unlike the classical motion of objects the equation of motions of quantum phenomenon deals with the likelihood of the trajectories.