论文标题

Cheetah:用切换修剪加速数据库查询

Cheetah: Accelerating Database Queries with Switch Pruning

论文作者

Tirmazi, Muhammad, Basat, Ran Ben, Gao, Jiaqi, Yu, Minlan

论文摘要

现代数据库系统正在越来越多地分布,并难以减少大量数据的查询完成时间。在本文中,我们利用网络中的可编程开关来部分卸载查询计算到交换机。尽管开关提供了高性能,但它们具有资源和编程限制,使实施各种查询变得困难。为了适应这些约束,我们介绍了数据\ emph {Pruning}的概念 - 过滤出来保证不会影响输出的条目。然后,数据库系统运行相同的查询,但在修剪的数据上可以大大减少处理时间。我们建议针对各种查询进行修剪算法。我们在赤脚的tofino开关和火花上实现了我们的系统Cheetah。我们对多个工作负载的评估显示,与Spark相比,查询完成时间的$ 40-200 \%$改进。

Modern database systems are growing increasingly distributed and struggle to reduce query completion time with a large volume of data. In this paper, we leverage programmable switches in the network to partially offload query computation to the switch. While switches provide high performance, they have resource and programming constraints that make implementing diverse queries difficult. To fit in these constraints, we introduce the concept of data \emph{pruning} -- filtering out entries that are guaranteed not to affect output. The database system then runs the same query but on the pruned data, which significantly reduces processing time. We propose pruning algorithms for a variety of queries. We implement our system, Cheetah, on a Barefoot Tofino switch and Spark. Our evaluation on multiple workloads shows $40 - 200\%$ improvement in the query completion time compared to Spark.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源