论文标题

在图形的边缘理想的符号力量深度上

On the depth of symbolic powers of edge ideals of graphs

论文作者

Fakhari, S. A. Seyed

论文摘要

假设$ g $是一个带有edge gibles $ i(g)$和星形包装编号$α_2(g)$的图。我们表示$ i(g)$ y(g)^{(s)} $的$ s $ th符号功率。结果表明,不等式$ {\ rm depth} s/(i(g)^{(s)})\ geqα_2(g)-s+1 $对于每个和弦图$ g $和每个整数$ s $ s \ s \ geq 1 $都是正确的。此外,事实证明,对于任何图$ g $,我们都有$ {\ rm depth} s/(i(g)^{(2)})\ geqα_2(g)-1 $。

Assume that $G$ is a graph with edge ideal $I(G)$ and star packing number $α_2(G)$. We denote the $s$-th symbolic power of $I(G)$ by $I(G)^{(s)}$. It is shown that the inequality ${\rm depth} S/(I(G)^{(s)})\geq α_2(G)-s+1$ is true for every chordal graph $G$ and every integer $s\geq 1$. Moreover, it is proved that for any graph $G$, we have ${\rm depth} S/(I(G)^{(2)})\geq α_2(G)-1$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源