论文标题

棕榈理论,随机措施和斯坦因耦合

Palm theory, random measures and Stein couplings

论文作者

Chen, Louis H. Y., Röllin, Adrian, Xia, Aihua

论文摘要

我们建立了一种通用的浆果式类型,该类型在适当的力矩假设下在许多情况下具有最佳的界限。通过将一般结合与棕榈理论相结合,我们推断出一个新的误差,以评估正常近似与随机测量(包括随机几何形状)产生的统计数据的准确性。我们说明了在四个示例中使用绑定的使用:完全随机的度量,局部依赖随机过程的随机度量以及Ginibre-voronoi Tessellations的总边长度和Poisson-Voronoi Tessellations。此外,我们将一般界限应用于Stein耦合,并讨论占用问题中局部依赖和添加功能的特殊情况。

We establish a general Berry-Esseen type bound which gives optimal bounds in many situations under suitable moment assumptions. By combining the general bound with Palm theory, we deduce a new error bound for assessing the accuracy of normal approximation to statistics arising from random measures, including stochastic geometry. We illustrate the use of the bound in four examples: completely random measures, excursion random measure of a locally dependent random process, and the total edge length of Ginibre-Voronoi tessellations and of Poisson-Voronoi tessellations. Moreover, we apply the general bound to Stein couplings and discuss the special cases of local dependence and additive functionals in occupancy problems.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源