论文标题

在射频信号中保存行为隐私的框架

A Framework for Behavior Privacy Preserving in Radio Frequency Signal

论文作者

Liu, Jianwei, Han, Jinsong, Yang, Lei, Wang, Fei, Lin, Feng, Ren, Kui

论文摘要

近年来,以人为中心的无线传感应用的开发,可以通过分析目标人员引起的信号失真来检索一些人类信息,例如用户的身份和动作。但是,无线传播的开放性引起了人们对用户隐私的越来越关注,因为在某些情况下,人类的身份或人类运动都很敏感,包括个人住所,实验室和办公室。研究人员报告说,可以滥用商品WiFi信号来识别用户。为了消除这种威胁,在本文中,我们提出了一个隐私保护框架,以有效地隐藏无线信号中用户行为的信息,同时保留用户身份验证的能力。我们框架的核心是一种基于暹罗网络的新型深层模型,即RFBP-NET。通过这种方式,无线传感会适度揭示用户信息。我们对实际WiFi和RFID系统和开放数据集进行了广泛的实验。实验结果表明,RFBP-NET能够显着降低活性识别精度,即RFID系统的降低70%,WiFi系统降低80%,并且用户身份验证的准确性略有惩罚,即,RFID和WIFI系统的降低仅降低了5%和1%。

Recent years have witnessed the bloom development of the human-centered wireless sensing applications, in which some human information, such as the user's identity and motions, can be retrieved through analyzing the signal distortion caused by the target person. However, the openness of wireless transmission raises increasing concerns on user privacy, since either the human identity or human motion is sensitive in certain scenarios, including personal residence, laboratory, and office. Researchers have reported that commodity WiFi signals can be abused to identify users. To dispel this threat, in this paper we propose a privacy-preserving framework to effectively hide the information of user behaviors in wireless signals while retaining the ability of user authentication. The core of our framework is a novel Siamese network-based deep model, namely RFBP-Net. In this way, wireless sensing reveals user information moderately. We conduct extensive experiments on both the real WiFi and RFID system and open datasets. The experiment results show that RFBP-Net is able to significantly reduce the activity recognition accuracy, i.e., 70% reduction in the RFID system and 80% reduction in the WiFi system, with a slight penalty in the user authentication accuracy, i.e., only 5% and 1% decrease in the RFID and WiFi system, respectively.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源