论文标题

在随机景观电位中真空的分布

The Distribution of Vacua in Random Landscape Potentials

论文作者

Low, Lerh Feng, Hotchkiss, Shaun, Easther, Richard

论文摘要

景观宇宙学认为存在大量亚稳态的最小值,具有复杂的,多维的标量潜力 - “景观”。在许多维度上的随机矩阵和随机功能提供了景观的玩具模型,从而探索了与这些情况相关的概念问题。我们计算最小值的相对数量和斜率作为真空能量$λ$在$ n $维的高斯随机电位中的函数,量化了相关的概率密度,$ p(λ)$。在正常化之后,$ p(λ)$仅取决于尺寸$ n $和单个免费参数$γ$,这与随机函数的功率谱有关。对于具有高斯功率谱的高斯风景,正面的微小片段以$ n $缩小了超级指数的缩小;在$ n = 100 $,$ p(λ> 0)\大约10^{ - 1197} $。同样,Hessian矩阵的典型特征值表明,典型的minima最平坦的方法以$ n $增长,而两个最坦率的方向的斜率以$ n $ $ n $增长。我们讨论了这些结果对沼泽和常规人类限制对景观宇宙学的含义。特别是,对于极少量极少见时的参数值,最坦率的方法是$λ\ 0 $比典型的minima的平整得多,越来越多,越来越多的典型溶液的生存能力。

Landscape cosmology posits the existence of a convoluted, multidimensional, scalar potential -- the "landscape" -- with vast numbers of metastable minima. Random matrices and random functions in many dimensions provide toy models of the landscape, allowing the exploration of conceptual issues associated with these scenarios. We compute the relative number and slopes of minima as a function of the vacuum energy $Λ$ in an $N$-dimensional Gaussian random potential, quantifying the associated probability density, $p(Λ)$. After normalisations $p(Λ)$ depends only on the dimensionality $N$ and a single free parameter $γ$, which is related to the power spectrum of the random function. For a Gaussian landscape with a Gaussian power spectrum, the fraction of positive minima shrinks super-exponentially with $N$; at $N=100$, $p(Λ>0) \approx 10^{-1197}$. Likewise, typical eigenvalues of the Hessian matrices reveal that the flattest approaches to typical minima grow flatter with $N$, while the ratio of the slopes of the two flattest directions grows with $N$. We discuss the implications of these results for both swampland and conventional anthropic constraints on landscape cosmologies. In particular, for parameter values when positive minima are extremely rare, the flattest approaches to minima where $Λ\approx 0$ are much flatter than for typical minima, increasingly the viability of quintessence solutions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源