论文标题
深度学习大气边界层的高度
Deep learning the atmospheric boundary layer height
论文作者
论文摘要
全球对人类可持续未来的关注问题源于气雾剂对全球气候的影响。大气气溶胶及其与气候影响的关系是了解气候强迫动态并提高我们对气候变化的了解的关键。由于其对降水,温度,地形和人类活动的反应,最动态的大气区域之一是大气边界层(ABL):ABL气溶胶对气候变化,人类健康,粮食安全的辐射强迫的演变具有很大的影响。 ABL模式行为的识别需要持续的监视以及对其检测和分析的仪器和计算方法的应用。在这里,我们通过以监督的方式训练卷积神经网络,展示了一种新方法,该方法是通过光检测和范围(LIDAR)信号引起的ABL顶部的新方法;迫使它学习如何在实际的,非理想的条件以及完全自动化的,无监督的方式上检索这样的动态参数。我们的发现为LIDAR弹性,非弹性和去极化信号处理的完整整合铺平了道路,并为气溶胶实时定量感知提供了一种新颖的方法。
A question of global concern regarding the sustainable future of humankind stems from the effect due to aerosols on the global climate. The quantification of atmospheric aerosols and their relationship to climatic impacts are key to understanding the dynamics of climate forcing and to improve our knowledge about climate change. Due to its response to precipitation, temperature, topography and human activity, one of the most dynamical atmospheric regions is the atmospheric boundary layer (ABL): ABL aerosols have a sizable impact on the evolution of the radiative forcing of climate change, human health, food security, and, ultimately, on the local and global economy. The identification of ABL pattern behaviour requires constant monitoring and the application of instrumental and computational methods for its detection and analysis. Here, we show a new method for the retrieval of ABL top arising from light detection and ranging (LiDAR) signals, by training a convolutional neural network in a supervised manner; forcing it to learn how to retrieve such a dynamical parameter on real, non-ideal conditions and in a fully automated, unsupervised way. Our findings pave the way for a full integration of LiDAR elastic, inelastic, and depolarisation signal processing, and provide a novel approach for real-time quantitative sensing of aerosols.