论文标题

学习算法,用于使多尺模拟的不确定性空间和应用

Learning Algorithms for Coarsening Uncertainty Space and Applications to Multiscale Simulations

论文作者

Zhang, Zecheng, Chung, Eric, Efendiev, Yalchin, Leung, Wing Tat

论文摘要

在本文中,我们研究并设计了随机多尺度PDE的多尺度模拟。至于空间,我们考虑了一种粗网格和已知的多尺度方法,即广义的多尺度有限元方法(GMSFEM)。为了获得每个粗大块中溶液的较小尺寸表示,需要对不确定性空间进行划分(粗糙)。这种粗化收集了实现,这些实现提供了类似的多尺度特征(或其他选择的方法)。已知此步骤在计算上是要求的,因为它需要许多本地解决方案和基于它们的聚类。在本文中,我们采取了不同的方法,学习使不确定性空间变得更粗糙。我们的方法使用深度学习技术来识别不确定性空间中的簇(变形)。我们使用卷积神经网络与对手神经网络中的某些技术相结合。我们在提出的神经网络中定义了适当的损失函数,其中损失函数由几个部分组成,其中包括与群集相关的术语和基础函数重建。我们在多孔介质的示例中为通道渗透性场提供了数值结果。

In this paper, we investigate and design multiscale simulations for stochastic multiscale PDEs. As for the space, we consider a coarse grid and a known multiscale method, the Generalized Multiscale Finite Element Method (GMsFEM). In order to obtain a small dimensional representation of the solution in each coarse block, the uncertainty space needs to be partitioned (coarsened). This coarsening collects realizations that provide similar multiscale features as outlined in GMsFEM (or other method of choice). This step is known to be computationally demanding as it requires many local solves and clustering based on them. In this paper, we take a different approach and learn coarsening the uncertainty space. Our methods use deep learning techniques in identifying clusters(coarsening) in the uncertainty space. We use convolutional neural networks combined with some techniques in adversary neural networks. We define appropriate loss functions in the proposed neural networks, where the loss function is composed of several parts that includes terms related to clusters and reconstruction of basis functions. We present numerical results for channelized permeability fields in the examples of flows in porous media.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源