论文标题
有限变形脱位力学的有限元近似
Finite Element Approximation of Finite Deformation Dislocation Mechanics
论文作者
论文摘要
我们开发并演示了有限变形静态和动态脱位力学的第一个通用计算工具。提出了有限变形(中尺度)场错力学理论的有限元公式。该模型是经典晶体/$ j_2 $可塑性的最小增强,从根本上讲是在中尺度上占极性/过量位错的。它具有计算在一般边界条件下任意形状和弹性各向异性的有限体中任意(进化)位错分布的静态和动态有限变形应力场。该能力用于呈现静电场的比较,在有限的变形和小变形下,用于螺钉和边缘位错,揭示了迄今为止意外的差异。计算框架是针对人体空间均匀脱位分布的应力场的几何线性和非线性理论的明显对比的预测,以及该理论的其他精确结果。还提供了有关时间依赖性数字的验证测试。该理论的晶体和各向同性版本中的尺寸效应被证明是模型的自然结果,并通过可用的实验数据进行了验证。随着惯性效应的纳入,当错位以大于材料的线性弹性剪切波速度大于线性弹性剪切波速度时,有限变形理论中证明了(不对称)传播马赫锥的发展。
We develop and demonstrate the first general computational tool for finite deformation static and dynamic dislocation mechanics. A finite element formulation of finite deformation (Mesoscale) Field Dislocation Mechanics theory is presented. The model is a minimal enhancement of classical crystal/$J_2$ plasticity that fundamentally accounts for polar/excess dislocations at the mesoscale. It has the ability to compute the static and dynamic finite deformation stress fields of arbitrary (evolving) dislocation distributions in finite bodies of arbitrary shape and elastic anisotropy under general boundary conditions. This capability is used to present a comparison of the static stress fields, at finite and small deformations, for screw and edge dislocations, revealing heretofore unexpected differences. The computational framework is verified against the sharply contrasting predictions of geometrically linear and nonlinear theories for the stress field of a spatially homogeneous dislocation distribution in the body, as well as against other exact results of the theory. Verification tests of the time-dependent numerics are also presented. Size effects in crystal and isotropic versions of the theory are shown to be a natural consequence of the model and are validated against available experimental data. With inertial effects incorporated, the development of an (asymmetric) propagating Mach cone is demonstrated in the finite deformation theory when a dislocation moves at speeds greater than the linear elastic shear wave speed of the material.