论文标题

在不同的盐环境中,基于苯噻嗪的氧化还原活性分子的粘性流量和流体动力学直径

Viscous flow properties and hydrodynamic diameter of phenothiazine-based redox-active molecules in different supporting salt environments

论文作者

Wang, Yilin, Kaur, Aman Preet, Attanayake, N. Harsha, Yu, Zhou, Suduwella, Thilini M., Cheng, Lei, Odom, Susan A., Ewoldt, Randy H.

论文摘要

我们报告了氧化还原活性有机分子,n-(2-(2-甲氧基乙氧基)乙基)苯噻嗪(Meept)的粘性流量,非含水氧化还原流动电池及其两个自由基阳离子盐的候选。微流体粘度仪可以使用小样品体积来确定粘度,这是剪切速率和浓度的函数,在非水溶剂,乙腈中,均具有和不支持盐。所有经过测试的解决方案都表明,牛顿行为的剪切速率高达30,000 1/s,这是通过对单个Meept分子的基于扩散的放松时间进行缩放的参数而无需聚集的。整齐的Meept是可流动的,但在室温下具有较大的粘度(412 MPa),比乙腈大约大约1000倍。当溶解在乙腈中时,Meept溶液的粘度较低。在高达0.5 m的浓度下,粘度增加了不到两个因子。根据浓度依赖性粘度测量值,分子信息是从内在粘度(水动力直径)和Huggins系数(相互作用)推断出来的。使用贝叶斯信息标准(BIC)评估模型拟合信誉。发现Meept及其带电的阳离子是“可流动的”,并且不会以高达0.5 M的浓度倾斜。Meept的流体动力直径约为0.85 nm,这在很大程度上对支撑盐和电荷状态不敏感。这种大小可与使用密度函数理论计算从优化结构获得的单分子的分子尺寸相媲美。结果表明,就其粘性流量而言,Meept是氧化还原流量电池的有前途的候选人。

We report viscous flow properties of a redox-active organic molecule, N-(2-(2-methoxyethoxy)ethyl)phenothiazine (MEEPT), a candidate for non-aqueous redox flow batteries, and two of its radical cation salts. A microfluidic viscometer enabled the use of small sample volumes in determining viscosity as a function of shear rate and concentration in the non-aqueous solvent, acetonitrile, both with and without supporting salts. All solutions tested show Newtonian behavior over shear rates of up to 30,000 1/s, which is rationalized by scaling arguments for the diffusion-based relaxation time of a single MEEPT molecule without aggregation. Neat MEEPT is flowable but with a large viscosity (412 mPa s) at room temperature), which is approximately 1,000 times larger than acetonitrile. When dissolved in acetonitrile, MEEPT solutions have low viscosities; at concentrations up to 0.5 M, the viscosity increases by less than a factor of two. From concentration-dependent viscosity measurements, molecular information is inferred from intrinsic viscosity (hydrodynamic diameter) and the Huggins coefficient (interactions). Model fit credibility is assessed using the Bayesian Information Criterion (BIC). It is found that the MEEPT and its charged cation are "flowable" and do not flocculate at concentrations up to 0.5 M. MEEPT has a hydrodynamic diameter of around 0.85 nm, which is largely insensitive to supporting salt and state of charge. This size is comparable to molecular dimensions of single molecules obtained from optimized structures using density function theory calculations. The results suggest that MEEPT is a promising candidate for redox flow batteries in terms of its viscous flow properties.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源