论文标题

时间加速图像超分辨率使用浅剩余特征代表网络

Time accelerated image super-resolution using shallow residual feature representative network

论文作者

Ajith, Meenu, Kurup, Aswathy Rajendra, Martínez-Ramón, Manel

论文摘要

深度学习的最新进展表明,单图像超分辨率领域取得了重大进展。随着这些技术的出现,可以重建具有高峰信号与噪声比(PSNR)和出色感知质量的高分辨率图像。与现有深层卷积神经网络相关的主要挑战是它们的计算复杂性和时间。网络深度的增加,通常会导致较高的空间复杂性。为了减轻这些问题,我们开发了一种创新的浅剩余特征代表网络(SRFRN),该网络(SRFRN)使用双色插值的低分辨率图像作为输入和残留代表单位(RFR),其中包括串行堆叠的残留非线性卷积。此外,高分辨率图像的重建是通过组合RFR单元的输出和来自双子室插值LR图像的残留输出来完成的。最后,已经在基准数据集上进行了多个实验,并且提出的模型说明了较高尺度的卓越性能。此外,与所有现有方法相比,该模型还显示出更快的执行时间。

The recent advances in deep learning indicate significant progress in the field of single image super-resolution. With the advent of these techniques, high-resolution image with high peak signal to noise ratio (PSNR) and excellent perceptual quality can be reconstructed. The major challenges associated with existing deep convolutional neural networks are their computational complexity and time; the increasing depth of the networks, often result in high space complexity. To alleviate these issues, we developed an innovative shallow residual feature representative network (SRFRN) that uses a bicubic interpolated low-resolution image as input and residual representative units (RFR) which include serially stacked residual non-linear convolutions. Furthermore, the reconstruction of the high-resolution image is done by combining the output of the RFR units and the residual output from the bicubic interpolated LR image. Finally, multiple experiments have been performed on the benchmark datasets and the proposed model illustrates superior performance for higher scales. Besides, this model also exhibits faster execution time compared to all the existing approaches.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源