论文标题
一维各向异性XXZ模型中的纠缠动力学
Dynamics of entanglement in the one-dimensional anisotropic XXZ model
论文作者
论文摘要
使用量子重归归化组方法研究了一维自旋1/2各向异性XXZ模型中纠缠的动力学。对于两种不同的淬火方法,我们获得了同意的分析表达,发现初始状态在系统纠缠的演变中起着关键作用,即系统完全返回每隔一个时期。我们的计算和分析表明,相对于各向异性参数,同意达到其最大或最小的特征时间的第一个衍生物发生在量子临界点处的非分析行为。有趣的是,特征时间与系统大小的第一个衍生物的最小值表现出与平衡中系统基态纠缠的缩放行为相同的缩放行为。特别是,临界点附近的缩放行为与初始状态无关。
The dynamics of entanglement in the one-dimensional spin-1/2 anisotropic XXZ model is studied using the quantum renormalization-group method. We obtain the analytical expression of the concurrence, for two different quenching methods, it is found that initial state plays a key role in the evolution of system entanglement, i.e., the system returns completely to the initial state every other period. Our computations and analysis indicate that the first derivative of the characteristic time at which the concurrence reaches its maximum or minimum with respect to the anisotropic parameter occurs nonanalytic behaviors at the quantum critical point. Interestingly, the minimum value of the first derivative of the characteristic time versus the size of the system exhibits the scaling behavior which is the same as the scaling behavior of the system ground-state entanglement in equilibrium. In particular, the scaling behavior near the critical point is independent of the initial state.