论文标题
搜索结果集群在协作声音集中
Search Result Clustering in Collaborative Sound Collections
论文作者
论文摘要
如今的大尺寸在线多媒体数据库使检索其内容是一项艰巨且耗时的任务。在线声音集合的用户通常会提交表达广泛意图的搜索查询,通常使系统返回大型且难以控制的结果集。搜索结果群集是一种将搜索内容内容组织到一致组中的技术,该搜索内容允许用户在其结果中识别有用的子集。获得可以使用合适界面探索的连贯和独特的簇,对于使该技术成为传统搜索引擎的有用补充至关重要。在我们的工作中,我们提出了一种基于图形的方法,使用音频功能来群集查询大型在线数据库时获得的各种声音集合。我们提出了一种通过利用与每种声音相关的元数据来评估不同特征的性能的方法。使用手动注释数据集的地面真相标签进行评估,对此分析进行了互补。我们表明,使用置信度度量来丢弃不一致的簇可以提高分区的质量。在确定了最合适的聚类功能之后,我们对执行声音设计任务的用户进行了实验,以评估我们的方法及其用户界面。进行定性分析,包括可用性问卷和半结构化访谈。这为我们提供了有关促进与集群有效互动的功能的宝贵新见解。
The large size of nowadays' online multimedia databases makes retrieving their content a difficult and time-consuming task. Users of online sound collections typically submit search queries that express a broad intent, often making the system return large and unmanageable result sets. Search Result Clustering is a technique that organises search-result content into coherent groups, which allows users to identify useful subsets in their results. Obtaining coherent and distinctive clusters that can be explored with a suitable interface is crucial for making this technique a useful complement of traditional search engines. In our work, we propose a graph-based approach using audio features for clustering diverse sound collections obtained when querying large online databases. We propose an approach to assess the performance of different features at scale, by taking advantage of the metadata associated with each sound. This analysis is complemented with an evaluation using ground-truth labels from manually annotated datasets. We show that using a confidence measure for discarding inconsistent clusters improves the quality of the partitions. After identifying the most appropriate features for clustering, we conduct an experiment with users performing a sound design task, in order to evaluate our approach and its user interface. A qualitative analysis is carried out including usability questionnaires and semi-structured interviews. This provides us with valuable new insights regarding the features that promote efficient interaction with the clusters.