论文标题

功能时间序列的引导程序预测带

Bootstrap Prediction Bands for Functional Time Series

论文作者

Paparoditis, Efstathios, Shang, Han Lin

论文摘要

提出了用于构造固定功能时间序列的预测频段的引导程序。该过程利用了功能过程的Karhunen-Loeve表示中出现的一系列傅立叶系数的一般矢量自回旋表示形式。它以无模型的方式生成了向后的功能复制,以充分模仿基础过程的依赖性结构,并且在每个功能性伪时间序列的末尾具有相同的条件固定曲线。然后将引导程序预测误差分布计算为无模型,引导产生的未来功能观察和从用于预测模型获得的功能预测之间的差。这允许估计的预测错误分布来说明与预测相关的创新和估计错误以及由于模型错误指定而引起的可能错误。我们在估计有条件的预测误差分布时建立了引导程序的渐近有效性,并且我们还表明该过程可以(渐近)(渐近)所需的覆盖范围来构建预测频段。还引入了基于对学生预测错误过程的条件分布的一致估计的预测频段。这些频段允许更适当地考虑到预测的局部不确定性。通过模拟研究和对两个数据集的分析,我们证明了所提出方法的能力和良好样本性能。

A bootstrap procedure for constructing prediction bands for a stationary functional time series is proposed. The procedure exploits a general vector autoregressive representation of the time-reversed series of Fourier coefficients appearing in the Karhunen-Loeve representation of the functional process. It generates backward-in-time, functional replicates that adequately mimic the dependence structure of the underlying process in a model-free way and have the same conditionally fixed curves at the end of each functional pseudo-time series. The bootstrap prediction error distribution is then calculated as the difference between the model-free, bootstrap-generated future functional observations and the functional forecasts obtained from the model used for prediction. This allows the estimated prediction error distribution to account for the innovation and estimation errors associated with prediction and the possible errors due to model misspecification. We establish the asymptotic validity of the bootstrap procedure in estimating the conditional prediction error distribution of interest, and we also show that the procedure enables the construction of prediction bands that achieve (asymptotically) the desired coverage. Prediction bands based on a consistent estimation of the conditional distribution of the studentized prediction error process also are introduced. Such bands allow for taking more appropriately into account the local uncertainty of prediction. Through a simulation study and the analysis of two data sets, we demonstrate the capabilities and the good finite-sample performance of the proposed method.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源