论文标题

学习一个用于标尺 - 屈光度超级分辨率的网络

Learning A Single Network for Scale-Arbitrary Super-Resolution

论文作者

Wang, Longguang, Wang, Yingqian, Lin, Zaiping, Yang, Jungang, An, Wei, Guo, Yulan

论文摘要

最近,通过强大的网络,单图超分辨率(SR)的性能得到了显着提高。但是,这些网络是针对具有单个特定整数尺度(例如x2; x3,x4)的图像SR开发的,并且不能用于非直觉和非对称SR。在本文中,我们建议从特定于量表的网络中学习一个衡量标准图像SR网络。具体而言,我们为现有SR网络提供了一个插件模块,以执行尺度 - 屈光度SR,该模块由多个标尺感知的特征适应块和一个比例吸引的UPSMPLING层组成。此外,我们引入了一种规模感知的知识转移范式,以将知识从特定于规模的网络转移到标准 - 胜诉网络。我们的插件模块可以轻松地适应现有网络,以实现规模偏差SR。这些网络用我们的模块插入的网络可以为非直集和非对称SR实现有希望的结果,同时维持具有整数量表因子的SR的最先进性能。此外,我们模块的其他计算和内存成本非常小。

Recently, the performance of single image super-resolution (SR) has been significantly improved with powerful networks. However, these networks are developed for image SR with a single specific integer scale (e.g., x2;x3,x4), and cannot be used for non-integer and asymmetric SR. In this paper, we propose to learn a scale-arbitrary image SR network from scale-specific networks. Specifically, we propose a plug-in module for existing SR networks to perform scale-arbitrary SR, which consists of multiple scale-aware feature adaption blocks and a scale-aware upsampling layer. Moreover, we introduce a scale-aware knowledge transfer paradigm to transfer knowledge from scale-specific networks to the scale-arbitrary network. Our plug-in module can be easily adapted to existing networks to achieve scale-arbitrary SR. These networks plugged with our module can achieve promising results for non-integer and asymmetric SR while maintaining state-of-the-art performance for SR with integer scale factors. Besides, the additional computational and memory cost of our module is very small.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源