论文标题

基于单层神经网络的线性化隐式方法:应用于Keller-Segel模型

Linearized Implicit Methods Based on a Single-Layer Neural Network: Application to Keller-Segel Models

论文作者

Amine, M. Benzakour

论文摘要

本文涉及一些二维Keller-segel趋化模型的数值近似,尤其是那些产生模式形成的趋化模型。当使用完全隐含的方案求解时,部分分化方程的这种非线性抛物线抛物线或抛物线 - 纤维化系统的数值分辨率会消耗大量的计算时间。但是,标准线性化的半图像方案需要合理的计算时间,但缺乏准确性。在这项工作中,开发了基于单层神经网络的两种方法来构建线性化的隐式方案:一种称为每个步骤训练的基本训练线性化隐式(ESTLI)方法和更有效的方法,即所选步骤训练线性化的隐式(SSTLI)方法。所提出的方案也使用带有混合差异方案近似的空间有限体积方法,用于对流 - 扩散通量,首先是针对胚胎学中产生的趋化系统的。建立了数值解与研究系统的相应弱解的收敛性。然后将所提出的方法应用于许多趋化模型,并进行了几种数值测试以说明其准确性,效率和鲁棒性。对其他非线性偏微分方程的开发方法的概括很简单。

This paper is concerned with numerical approximation of some two-dimensional Keller-Segel chemotaxis models, especially those generating pattern formations. The numerical resolution of such nonlinear parabolic-parabolic or parabolic-elliptic systems of partial differential equations consumes a significant computational time when solved with fully implicit schemes. Standard linearized semi-implicit schemes, however, require reasonable computational time, but suffer from lack of accuracy. In this work, two methods based on a single-layer neural network are developed to build linearized implicit schemes: a basic one called the each step training linearized implicit (ESTLI) method and a more efficient one, the selected steps training linearized implicit (SSTLI) method. The proposed schemes, which make use also of a spatial finite volume method with a hybrid difference scheme approximation for convection-diffusion fluxes, are first derived for a chemotaxis system arising in embryology. The convergence of the numerical solutions to a corresponding weak solution of the studied system is established. Then the proposed methods are applied to a number of chemotaxis models, and several numerical tests are performed to illustrate their accuracy, efficiency and robustness. Generalization of the developed methods to other nonlinear partial differential equations is straightforward.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源