论文标题

在野外学习以不受约束的远程凝视估计来检测头部运动

Learning to Detect Head Movement in Unconstrained Remote Gaze Estimation in the Wild

论文作者

Wang, Zhecan, Zhao, Jian, Lu, Cheng, Huang, Han, Yang, Fan, Li, Lianji, Guo, Yandong

论文摘要

不受限制的远程凝视估计仍然具有挑战性,主要是由于其易受了头姿势变异性的脆弱性。先前的解决方案努力在无约束的远程凝视跟踪中保持可靠的准确性。其中,基于外观的解决方案在提高凝视准确性方面具有巨大的潜力。但是,现有作品仍然遭受头部运动的困扰,并且不足以应对现实情况。尤其是其中大多数人在受控方案下研究凝视估计,在这些方案中,收集的数据集通常涵盖了有限的头置和凝视范围,从而带来了进一步的偏见。在本文中,我们提出了新型的端到端基于外观的凝视估计方法,这些方法可以更牢固地将不同水平的头置表示形式纳入凝视估计。我们的方法可以推广到具有低图像质量的现实情况,不同的灯光和无法直接的头置信息的情况。为了更好地展示我们方法的优势,我们进一步提出了一个新的基准数据集,其中最丰富的头现在组合反映了现实世界的情况。对几个公共数据集和我们自己的数据集进行了广泛的评估表明,我们的方法始终优于最先进的余量。

Unconstrained remote gaze estimation remains challenging mostly due to its vulnerability to the large variability in head-pose. Prior solutions struggle to maintain reliable accuracy in unconstrained remote gaze tracking. Among them, appearance-based solutions demonstrate tremendous potential in improving gaze accuracy. However, existing works still suffer from head movement and are not robust enough to handle real-world scenarios. Especially most of them study gaze estimation under controlled scenarios where the collected datasets often cover limited ranges of both head-pose and gaze which introduces further bias. In this paper, we propose novel end-to-end appearance-based gaze estimation methods that could more robustly incorporate different levels of head-pose representations into gaze estimation. Our method could generalize to real-world scenarios with low image quality, different lightings and scenarios where direct head-pose information is not available. To better demonstrate the advantage of our methods, we further propose a new benchmark dataset with the most rich distribution of head-gaze combination reflecting real-world scenarios. Extensive evaluations on several public datasets and our own dataset demonstrate that our method consistently outperforms the state-of-the-art by a significant margin.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源