论文标题
在野外学习以不受约束的远程凝视估计来检测头部运动
Learning to Detect Head Movement in Unconstrained Remote Gaze Estimation in the Wild
论文作者
论文摘要
不受限制的远程凝视估计仍然具有挑战性,主要是由于其易受了头姿势变异性的脆弱性。先前的解决方案努力在无约束的远程凝视跟踪中保持可靠的准确性。其中,基于外观的解决方案在提高凝视准确性方面具有巨大的潜力。但是,现有作品仍然遭受头部运动的困扰,并且不足以应对现实情况。尤其是其中大多数人在受控方案下研究凝视估计,在这些方案中,收集的数据集通常涵盖了有限的头置和凝视范围,从而带来了进一步的偏见。在本文中,我们提出了新型的端到端基于外观的凝视估计方法,这些方法可以更牢固地将不同水平的头置表示形式纳入凝视估计。我们的方法可以推广到具有低图像质量的现实情况,不同的灯光和无法直接的头置信息的情况。为了更好地展示我们方法的优势,我们进一步提出了一个新的基准数据集,其中最丰富的头现在组合反映了现实世界的情况。对几个公共数据集和我们自己的数据集进行了广泛的评估表明,我们的方法始终优于最先进的余量。
Unconstrained remote gaze estimation remains challenging mostly due to its vulnerability to the large variability in head-pose. Prior solutions struggle to maintain reliable accuracy in unconstrained remote gaze tracking. Among them, appearance-based solutions demonstrate tremendous potential in improving gaze accuracy. However, existing works still suffer from head movement and are not robust enough to handle real-world scenarios. Especially most of them study gaze estimation under controlled scenarios where the collected datasets often cover limited ranges of both head-pose and gaze which introduces further bias. In this paper, we propose novel end-to-end appearance-based gaze estimation methods that could more robustly incorporate different levels of head-pose representations into gaze estimation. Our method could generalize to real-world scenarios with low image quality, different lightings and scenarios where direct head-pose information is not available. To better demonstrate the advantage of our methods, we further propose a new benchmark dataset with the most rich distribution of head-gaze combination reflecting real-world scenarios. Extensive evaluations on several public datasets and our own dataset demonstrate that our method consistently outperforms the state-of-the-art by a significant margin.