论文标题

伯格曼空间的新原子分解在有限的对称域上

New atomic decompositions of Bergman spaces on bounded symmetric domains

论文作者

Christensen, Jens Gerlach, Olafsson, Gestur

论文摘要

我们为伯格曼空间提供了一大批原子,在不可还原有限的对称域上。这大大概括了Coifman和Rochberg从1980年开始的结果。原子分解是使用该域的Holomorphic离散级数表示得出的,该方法的灵感来自小波和库里特理论的最新进展。这种方法还解决了原子分解之间的关系,以实现域的有限和无限实现。

We provide a large family of atoms for Bergman spaces on irreducible bounded symmetric domains. This vastly generalizes results by Coifman and Rochberg from 1980. The atomic decompositions are derived using the holomorphic discrete series representations for the domain, and the approach is inspired by recent advances in wavelet and coorbit theory. This approach also settles the relation between atomic decompositions for the bounded and unbounded realizations of the domain.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源