论文标题
高度可变形的表面上的现场介导的运动动力学
Field-mediated locomotor dynamics on highly deformable surfaces
论文作者
论文摘要
在许多系统中,运动发生在变形和可变形的表面上,为仅由实体与环境的耦合介导的动力相互作用的可能性。在这里,我们研究了在两种情况下在高度可变形的氨纶膜上机器人运动的“两体”动力学:一个机器人绕着大型中心凹陷绕,另一个机器人仅通过相互环境变形而彼此相互影响。受到单个机器人轨道的相似之处的启发,我们在黑洞周围的一般相对论轨道的轨道上,我们将车辆加上物理空间中的膜动力学重新铸造到基金弯曲的时空中的“测试粒子”的大地运动中,并证明了这一框架如何促进理解观察到的动力学。两机器人问题还与爱因斯坦的一般相对论重力观点表现出相似之处,用惠勒的话说:“时空告诉您如何移动;物质告诉时空如何弯曲。”我们将映射推广到包含一个相互耦合,该耦合转化为基于机器人曲率的控制方案,该方案可修改相互作用(促进避免或聚集)而无需远程感应。我们的工作为开发机械模拟重力系统提供了一个起点,并开发了一个框架,该框架可以在可变形环境和复杂景观中的机器人探索中提供对主动物质的见解。
In many systems motion occurs on deformed and deformable surfaces, setting up the possibility for dynamical interactions solely mediated by the coupling of the entities with their environment. Here we study the "two-body" dynamics of robot locomotion on a highly deformable spandex membrane in two scenarios: one in which a robot orbits a large central depression and the other where the two robots affect each other's motion solely through mutual environmental deformations. Inspired by the resemblance of the orbits of the single robot with those of general relativistic orbits around black holes, we recast the vehicle plus membrane dynamics in physical space into the geodesic motion of a "test particle" in a fiducial curved space-time and demonstrate how this framework facilitates understanding the observed dynamics. The two-robot problem also exhibits a resemblance with Einstein's general relativistic view of gravity, which in the words of Wheeler: "spacetime tells matter how to move; matter tells spacetime how to curve." We generalize this case the mapping to include a reciprocal coupling that translates into robotic curvature-based control schemes which modify interaction (promoting avoidance or aggregation) without long-range sensing. Our work provides a starting point for developing a mechanical analog gravity system as well as develops a framework that can provide insights into active matter in deformable environments and robot exploration in complex landscapes.