论文标题

层次图像分类使用嵌入式嵌入

Hierarchical Image Classification using Entailment Cone Embeddings

论文作者

Dhall, Ankit, Makarova, Anastasia, Ganea, Octavian, Pavllo, Dario, Greeff, Michael, Krause, Andreas

论文摘要

图像分类已经进行了广泛的研究,但是除了传统的图像标签对以外,在使用非常规的外部指导方面的工作有限。我们提供了一组方法,用于利用有关类标签中嵌入的语义层次结构的信息。我们首先将标签层次结构知识注入基于任意CNN的分类器,并从经验上表明,与图像中的视觉语义相结合的此类外部语义信息的可用性提高了整体性能。朝这个方向迈出一步,我们使用由欧几里得和双曲线几何形状控制的订单保留嵌入(以自然语言普遍存在,并根据层次结构的图像分类和表示学习,更明确地对标签标签标签和标签图像相互作用进行建模。我们从经验上验证了层次ETHEC数据集上的所有模型。

Image classification has been studied extensively, but there has been limited work in using unconventional, external guidance other than traditional image-label pairs for training. We present a set of methods for leveraging information about the semantic hierarchy embedded in class labels. We first inject label-hierarchy knowledge into an arbitrary CNN-based classifier and empirically show that availability of such external semantic information in conjunction with the visual semantics from images boosts overall performance. Taking a step further in this direction, we model more explicitly the label-label and label-image interactions using order-preserving embeddings governed by both Euclidean and hyperbolic geometries, prevalent in natural language, and tailor them to hierarchical image classification and representation learning. We empirically validate all the models on the hierarchical ETHEC dataset.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源