论文标题

径向兴奋的$ u \ left(1 \右)$衡量$ q $ -Balls

Radially excited $U\left(1\right)$ gauged $Q$-balls

论文作者

Loginov, A. Yu., Gauzshtein, V. V.

论文摘要

使用分析和数值方法研究了径向激动的$ u(1)$衡量$ q $ - $ - $ q $ - 与Nongaug的案例不同,只有有限数量的径向兴奋的数量计量了$ q $ - $ q $ - 以给定的参数的给定值。与未经激发的$ q $ - 鲍尔(Ball)相似,径向兴奋的人不能拥有超过一定限制值的Noether收费。这种限制的NOETHE费用随着计量$ Q $ -BALL的径向激发的增加而降低。对于$ n $ th的径向激发,量规耦合常数的最大允许值,并且如果量规耦合常数超过此限制值,则不可能$ n $ th的径向激发$ q $ -ball是不可能的。与限制性螺旋电荷类似,限制量规耦合常数随着径向激发的增加而降低。以固定的指控,随着径向激发的增加,测量$ q $ - 球的能量增加了,因此,径向激动的计量$ q $ - $ q $ - 球不稳定,因为过渡到不那么兴奋或未引起的兴奋。

Radially excited $U(1)$ gauged $Q$-balls are studied using both analytical and numerical methods. Unlike the nongauged case, there exists only a finite number of radially excited gauged $Q$-balls at given values of the model's parameters. Similarly to the unexcited gauged $Q$-ball, the radially excited one cannot possess the Noether charge exceeding some limiting value. This limiting Noether charge decreases with an increase in the radial excitation of the gauged $Q$-ball. For $n$-th radial excitation, there is a maximum allowable value of the gauge coupling constant, and the existence of the $n$-th radially excited gauged $Q$-ball becomes impossible if the gauge coupling constant exceeds this limiting value. Similarly to the limiting Noether charge, the limiting gauge coupling constant decreases with an increase in the radial excitation. At a fixed Noether charge, the energy of the gauged $Q$-ball increases with an increase in the radial excitation, and thus the radially excited gauged $Q$-ball is unstable against transit into a less excited or unexcited one.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源