论文标题
Quantnet:跨系统交易策略转移学习
QuantNet: Transferring Learning Across Systematic Trading Strategies
论文作者
论文摘要
系统的金融贸易策略占股票和大部分外汇市场的贸易量的80%以上。尽管来自多个市场的数据可用,但当前交易的方法主要依赖于每个单个市场的学习交易策略。在本文中,我们朝着制定完全端到端的全球交易策略迈出了一步,这些策略利用系统的趋势来制定特定于市场的交易策略。我们介绍了QuantNet:一种学习市场不足趋势的体系结构,并使用这些趋势来学习卓越的市场特定交易策略。每个特定于市场的模型都由编码器对组成。编码器将特定于市场的数据转换为一个抽象的潜在表示,该图由所有市场共享的全球模型处理,而解码器则根据市场特定的编码器和全球模型学习了基于本地和全球信息的特定于市场的交易策略。 QuantNet在转移和元学习方面使用了最新的进步,在此方面,特定于市场的参数可以专门研究手头的问题,而市场不合时宜的参数则被驱动以捕获所有市场的信号。通过整合特质的市场数据,我们可以学习一般可转移的动态,避免过度适应以产生具有较高回报的策略的问题。我们在58个全球股票市场的3103个资产的历史数据上评估Quantnet。在表现最高的基线方面,QuantNet产生的夏普(Sharpe)和69%的Calmar比率提高了51%。此外,我们还展示了我们的方法比非转移学习变体的好处,夏普和喀尔尔的比率提高了15%和41%。附录中可用的代码。
Systematic financial trading strategies account for over 80% of trade volume in equities and a large chunk of the foreign exchange market. In spite of the availability of data from multiple markets, current approaches in trading rely mainly on learning trading strategies per individual market. In this paper, we take a step towards developing fully end-to-end global trading strategies that leverage systematic trends to produce superior market-specific trading strategies. We introduce QuantNet: an architecture that learns market-agnostic trends and use these to learn superior market-specific trading strategies. Each market-specific model is composed of an encoder-decoder pair. The encoder transforms market-specific data into an abstract latent representation that is processed by a global model shared by all markets, while the decoder learns a market-specific trading strategy based on both local and global information from the market-specific encoder and the global model. QuantNet uses recent advances in transfer and meta-learning, where market-specific parameters are free to specialize on the problem at hand, whilst market-agnostic parameters are driven to capture signals from all markets. By integrating over idiosyncratic market data we can learn general transferable dynamics, avoiding the problem of overfitting to produce strategies with superior returns. We evaluate QuantNet on historical data across 3103 assets in 58 global equity markets. Against the top performing baseline, QuantNet yielded 51% higher Sharpe and 69% Calmar ratios. In addition we show the benefits of our approach over the non-transfer learning variant, with improvements of 15% and 41% in Sharpe and Calmar ratios. Code available in appendix.