论文标题

食物识别的深度学习方法

Deep learning approaches in food recognition

论文作者

Kiourt, Chairi, Pavlidis, George, Markantonatou, Stella

论文摘要

自动基于图像的食物识别是一项特别具有挑战性的任务。过去,传统的图像分析方法已经达到了低分类的准确性,而深度学习方法可以识别食物类型及其成分。食物菜肴的内容通常是可变形的物体,通常包括复杂的语义,这使得定义其结构的任务非常困难。深度学习方法已经在此类挑战中表现出非常有希望的结果,因此本章重点介绍了基于图像的食物识别中应用的一些流行方法和技术。概述了解决方案的三个主要解决方案,即从头开始的设计和基于平台的方法,尤其是用于手头的任务,并进行了测试和比较以揭示固有的优势和劣势。本章辅以基本的背景材料,该部分专门针对所采用的经验方法至关重要的相关数据集,以及一些强调未来方向的结论。

Automatic image-based food recognition is a particularly challenging task. Traditional image analysis approaches have achieved low classification accuracy in the past, whereas deep learning approaches enabled the identification of food types and their ingredients. The contents of food dishes are typically deformable objects, usually including complex semantics, which makes the task of defining their structure very difficult. Deep learning methods have already shown very promising results in such challenges, so this chapter focuses on the presentation of some popular approaches and techniques applied in image-based food recognition. The three main lines of solutions, namely the design from scratch, the transfer learning and the platform-based approaches, are outlined, particularly for the task at hand, and are tested and compared to reveal the inherent strengths and weaknesses. The chapter is complemented with basic background material, a section devoted to the relevant datasets that are crucial in light of the empirical approaches adopted, and some concluding remarks that underline the future directions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源