论文标题

大脑MR图像中无监督异常分割的自动编码器:比较研究

Autoencoders for Unsupervised Anomaly Segmentation in Brain MR Images: A Comparative Study

论文作者

Baur, Christoph, Denner, Stefan, Wiestler, Benedikt, Albarqouni, Shadi, Navab, Nassir

论文摘要

深度无监督的表示学习最近导致了大脑MRI中无监督异常检测(UAD)领域的新方法。这些作品背后的主要原则是通过学习压缩和恢复健康数据来学习正常解剖结构的模型。这允许从压缩,潜在异常样品的错误回收率中发现异常结构。该概念对医学图像分析社区引起了极大的兴趣,因为它可以缓解需要大量的手动分割培训数据的需求,这是当前有监督的深度学习的必要性和陷阱---和II)理论上允许检测任意的,甚至是监督方法的罕见病理,甚至可能无法找到。迄今为止,大多数作品的实验设计阻碍了有效的比较,因为i)它们对不同的数据集和不同的病理进行了评估,ii)使用不同的图像分辨率,iii)不同的模型体系结构具有不同的复杂性。这项工作的目的是通过利用单个体系结构,单个分辨率和相同的数据集来确定最近方法之间的可比性。除了提供方法的排名外,我们还尝试回答诸如i的问题),需要多少个健康的培训主题来建模正态性,ii)如果审查的方法也对域的转移也很敏感。此外,我们确定了公开挑战,并为未来的社区努力和研究方向提供建议。

Deep unsupervised representation learning has recently led to new approaches in the field of Unsupervised Anomaly Detection (UAD) in brain MRI. The main principle behind these works is to learn a model of normal anatomy by learning to compress and recover healthy data. This allows to spot abnormal structures from erroneous recoveries of compressed, potentially anomalous samples. The concept is of great interest to the medical image analysis community as it i) relieves from the need of vast amounts of manually segmented training data---a necessity for and pitfall of current supervised Deep Learning---and ii) theoretically allows to detect arbitrary, even rare pathologies which supervised approaches might fail to find. To date, the experimental design of most works hinders a valid comparison, because i) they are evaluated against different datasets and different pathologies, ii) use different image resolutions and iii) different model architectures with varying complexity. The intent of this work is to establish comparability among recent methods by utilizing a single architecture, a single resolution and the same dataset(s). Besides providing a ranking of the methods, we also try to answer questions like i) how many healthy training subjects are needed to model normality and ii) if the reviewed approaches are also sensitive to domain shift. Further, we identify open challenges and provide suggestions for future community efforts and research directions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源