论文标题
稳定的三维Langmuir Vortex Soliton
Stable three-dimensional Langmuir vortex soliton
论文作者
论文摘要
我们以饱和指数非线性的广义Zakharov方程模型中未磁化的血浆中的三维(3D)涡旋索尼顿的形式提出了数值解。为了找到高精度的解决方案,我们使用将PETVIASHVILI迭代程序和Newton-Kantorovich方法组合的两步数值方法。拓扑费用$ m = 1 $变为稳定的涡流孤子,只要非线性频移超过一定的临界值即可。稳定性预测通过直接模拟完整动力学方程来验证。
We present a numerical solution in the form of a three-dimensional (3D) vortex soliton in unmagnetized plasma in the model of the generalized Zakharov equations with saturating exponential nonlinearity. To find the solution with a high accuracy we use two-step numerical method combining the Petviashvili iteration procedure and the Newton-Kantorovich method. The vortex soliton with the topological charge $m=1$ turns out to be stable provided the nonlinear frequency shift exceeds a certain critical value. The stability predictions are verified by direct simulations of the full dynamical equation.