论文标题
图像垫的分层不透明传播
Hierarchical Opacity Propagation for Image Matting
论文作者
论文摘要
自然图像垫是计算摄影和计算机视觉中的一个基本问题。近年来,深层神经网络已经看到了自然图像垫子中成功的方法的激增。与传统的基于繁殖的效果方法相反,某些顶级深层图像垫子方法倾向于隐含在神经网络中传播。需要像素之间更直接的α哑光传播的新结构。为此,本文介绍了分层不透明度传播(HOP)底漆方法,其中不透明度信息在不同语义级别的每个点附近传播。层次结构基于一个全局和多个局部传播块。使用HOP结构,将根据输入图像的外观连接高分辨率特征图中的每个特征点对。我们进一步提出了一个不敏感的位置编码,该编码是为图像矩阵定制的,以处理未固定的输入图像的大小,并将随机插值增强介绍到图像矩阵中。广泛的实验和消融研究表明,啤酒花垫能够超过最先进的垫子方法。
Natural image matting is a fundamental problem in computational photography and computer vision. Deep neural networks have seen the surge of successful methods in natural image matting in recent years. In contrast to traditional propagation-based matting methods, some top-tier deep image matting approaches tend to perform propagation in the neural network implicitly. A novel structure for more direct alpha matte propagation between pixels is in demand. To this end, this paper presents a hierarchical opacity propagation (HOP) matting method, where the opacity information is propagated in the neighborhood of each point at different semantic levels. The hierarchical structure is based on one global and multiple local propagation blocks. With the HOP structure, every feature point pair in high-resolution feature maps will be connected based on the appearance of input image. We further propose a scale-insensitive positional encoding tailored for image matting to deal with the unfixed size of input image and introduce the random interpolation augmentation into image matting. Extensive experiments and ablation study show that HOP matting is capable of outperforming state-of-the-art matting methods.