论文标题

在模量空间上的矢量束上的hecke曲线上的微不足道

On vector bundles over moduli spaces trivial on Hecke curves

论文作者

Biswas, Indranil, Gomez, Tomas L.

论文摘要

令$ m_x(r,ξ)$为稳定矢量束的模量空间,在平滑的复杂射击曲线$ x $上,等级$ r $和固定的行列式$ $ξ$,使得$°(ξ)$与$ r $相关。如果$ e $是vector Bundle $ m_x(r,ξ)$,其限制在$ m_x(r,ξ)$中的每个hecke曲线都是微不足道的,我们证明$ e $是微不足道的。

Let $M_X(r,ξ)$ be the moduli space of stable vector bundles, on a smooth complex projective curve $X$, of rank $r$ and fixed determinant $ξ$ such that $°(ξ)$ is coprime to $r$. If $E$ is a vector bundle $M_X(r,ξ)$ whose restriction to every Hecke curve in $M_X(r,ξ)$ is trivial, we prove that $E$ is trivial.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源