论文标题

非莱普希兹动态系统中的统计决定论

Statistical determinism in non-Lipschitz dynamical systems

论文作者

Drivas, Theodore D., Mailybaev, Alexei A., Raibekas, Artem

论文摘要

我们研究了具有非lipschitz点奇异性的一类普通微分方程,这些方程在这一点上接受了非唯一的解决方案。作为选择标准,我们根据参数$ν$介绍随机正规化:正则化动力学是针对每个$ν> 0 $的全球定义,并且原始单数系统的恢复在消失$ν$的限制中。我们证明,当确定性系统具有某些混乱特性时,该极限独立于正则化产生独特的统计解。在这种情况下,通过奇异性后,溶液会自发随机:它们是随机选择的,具有内在的概率分布。

We study a class of ordinary differential equations with a non-Lipschitz point singularity, which admit non-unique solutions through this point. As a selection criterion, we introduce stochastic regularizations depending on the parameter $ν$: the regularized dynamics is globally defined for each $ν> 0$, and the original singular system is recovered in the limit of vanishing $ν$. We prove that this limit yields a unique statistical solution independent of regularization, when the deterministic system possesses certain chaotic properties. In this case, solutions become spontaneously stochastic after passing through the singularity: they are selected randomly with an intrinsic probability distribution.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源