论文标题
标量调整理论中对标量场的可行约束
Viable Constraint on Scalar Field in Scalar-Tensor Theory
论文作者
论文摘要
标量调整理论可以在约旦和爱因斯坦框架中配制,它们与标量场的重新定义在一起。由于在约旦框架中标量场方程的解决方案没有与爱因斯坦框架中的一一对应关系,我们给出了标准以及一些特定模型,以检查爱因斯坦框架中的标量场是否可靠,通过确认此场是否可逆地回到Jordan框架。我们进一步表明,可以通过爱因斯坦框架中耦合函数的示波器近似的参数来确定第一个参数化后纽顿后近似中的标准,并且可以将其视为标量探测器场景中任何数值研究的可行约束。我们还证明了带有无限常数参数$ω_ {\ text {bd}} $的Brans-Dicke理论是由于违反可行约束而导致的两个共形框架之间的等效性的反例。
The scalar-tensor theory can be formulated in both Jordan and Einstein frames, which are conformally related together with a redefinition of the scalar field. As the solution to the equation of the scalar field in the Jordan frame does not have the one-to-one correspondence with that in the Einstein frame, we give a criterion along with some specific models to check if the scalar field in the Einstein frame is viable or not by confirming whether this field is reversible back to the Jordan frame. We further show that the criterion in the first parameterized post-Newtonian approximation can be determined by the parameters of the osculating approximation of the coupling function in the Einstein frame and can be treated as a viable constraint on any numerical study in the scalar-tensor scenario. We also demonstrate that the Brans-Dicke theory with an infinite constant parameter $ω_{\text{BD}}$ is a counterexample of the equivalence between two conformal frames due to the violation of the viable constraint.