论文标题
海王星从行星相遇中的不寻常卫星的起源
The origin of Neptune's unusual satellites from a planetary encounter
论文作者
论文摘要
Neptunian卫星系统是不寻常的,包括Triton,一个大的($ \ sim2700 $ km)的月亮,在近距离的,圆形但逆行的轨道上,侧翼是Nereid,侧翼是最大的不规则卫星($ \ sim $ 300 km)。以前已经建议两位卫星捕获起源。在这里,我们探索了一种替代的原位形成模型,其中两个卫星在周围的磁盘中积聚,并通过与冰巨头(IG)的深度行星相遇被赋予不规则和怪异的轨道,就像在早期太阳能系统开发的尼斯场景中所预测的那样。我们使用$ n $ n $ body模拟,该IG通过在10-30 $ r_ \ mathrm {nep} $的圆形前期常规卫星腰带,接近20个Neptunian Radi($ r_ \ Mathrm {Nep} $)。我们发现,这些原始卫星中有一半仍然与海王星结合,并且0.4-3 \%直接散布在类似于Nereid的宽轨道上。与观察到的轨道相匹配的更好匹配,我们的模型的成功率与从地层中心轨道捕获大型内雷德式不规则卫星相当或更高。同时,IG相遇将大原始月球注入逆行轨道上,其特定角动量类似于我们的跑步的0.3-3 \%。虽然效率不如捕获场景(Agnor&Hamilton 2006),但我们的模型确实表明Triton的原位原始起源是动态的。我们还模拟了特里顿模拟卫星的碰撞后碰撞和潮汐轨道的演变,发现它们与Cuk&Gladman(2005年)一致的$ \ sim $$ 10^4 $年的时间表与Nereid脱钩。
The Neptunian satellite system is unusual, comprising Triton, a large ($\sim2700$ km) moon on a close-in, circular, yet retrograde orbit, flanked by Nereid, the largest irregular satellite ($\sim$300 km) on a highly eccentric orbit. Capture origins have been previously suggested for both moons. Here we explore an alternative in-situ formation model where the two satellites accreted in the circum-Neptunian disk and are imparted irregular and eccentric orbits by a deep planetary encounter with an ice giant (IG), like that predicted in the Nice scenario of early solar system development. We use $N$-body simulations of an IG approaching Neptune to 20 Neptunian radi ($R_\mathrm{Nep}$), through a belt of circular prograde regular satellites at 10-30 $R_\mathrm{Nep}$. We find that half of these primordial satellites remain bound to Neptune and that 0.4-3\% are scattered directly onto wide and eccentric orbits resembling that of Nereid. With better matches to the observed orbit, our model has a success rate comparable to or higher than capture of large Nereid-sized irregular satellites from heliocentric orbit. At the same time, the IG encounter injects a large primordial moon onto a retrograde orbit with specific angular momentum similar to Triton's in 0.3-3\% of our runs. While less efficient than capture scenarios (Agnor & Hamilton 2006), our model does indicate that an in-situ origin for Triton is dynamically possible. We also simulate the post-encounter collisional and tidal orbital evolution of Triton analogue satellites and find they are decoupled from Nereid on timescales of $\sim$$10^4$ years, in agreement with Cuk & Gladman (2005).