论文标题
世界不是二进制的:学会用灰度数据排名以进行对话响应选择
The World is Not Binary: Learning to Rank with Grayscale Data for Dialogue Response Selection
论文作者
论文摘要
响应选择在构建基于检索的对话系统中起着至关重要的作用。尽管选择响应选择自然是一个学习到级别的问题,但大多数先前的作品都可以进行重点视图,并针对此任务进行训练二进制分类器:每个响应候选者都标记为相关(一个)或无关紧要(零)。一方面,由于对响应质量的多样性的无知,这种形式化可以是最佳的。另一方面,用于学习到级别的注释灰度数据可能非常昂贵且具有挑战性。在这项工作中,我们表明灰度数据可以自动构建而无需人力。我们的方法采用现成的响应检索模型和响应生成模型作为自动灰度数据生成器。借助构建的灰度数据,我们提出了培训的多级排名目标,该目标可以(1)教授匹配模型以捕获更细粒度的上下文响应相关性差异,(2)在干扰物强度方面减少了火车测试差异。我们的方法简单,有效且普遍。在三个基准数据集和四个最先进的匹配模型上进行的实验表明,所提出的方法可带来显着和一致的性能改进。
Response selection plays a vital role in building retrieval-based conversation systems. Despite that response selection is naturally a learning-to-rank problem, most prior works take a point-wise view and train binary classifiers for this task: each response candidate is labeled either relevant (one) or irrelevant (zero). On the one hand, this formalization can be sub-optimal due to its ignorance of the diversity of response quality. On the other hand, annotating grayscale data for learning-to-rank can be prohibitively expensive and challenging. In this work, we show that grayscale data can be automatically constructed without human effort. Our method employs off-the-shelf response retrieval models and response generation models as automatic grayscale data generators. With the constructed grayscale data, we propose multi-level ranking objectives for training, which can (1) teach a matching model to capture more fine-grained context-response relevance difference and (2) reduce the train-test discrepancy in terms of distractor strength. Our method is simple, effective, and universal. Experiments on three benchmark datasets and four state-of-the-art matching models show that the proposed approach brings significant and consistent performance improvements.