论文标题
面部标志性检测和跟踪的细心一维热图回归
Attentive One-Dimensional Heatmap Regression for Facial Landmark Detection and Tracking
论文作者
论文摘要
尽管热图回归被认为是定位面部标志的最先进方法,但它具有巨大的空间复杂性,并且容易出现量化误差。为了解决这个问题,我们提出了一种新颖的专注一维热图回归方法,用于面部地标定位。首先,我们预测两组1D热图代表X和Y坐标的边际分布。与当前的热图回归方法相比,这些1D热图显着降低了空间复杂性,该方法使用2D热图代表X和Y坐标的关节分布。尽管GPU记忆力有限,但提出的方法以较低的空间复杂性可以输出高分辨率的1D热图,从而大大减轻了量化误差。其次,采用了共同注意机制来对X和Y坐标中存在的固有空间模式进行建模,因此还捕获了X和Y轴上的联合分布。第三,根据1D热图结构,我们提出了一个面部标志性检测器,该检测器捕获图像上具有里程碑意义的检测空间模式。跟踪器进一步捕获了具有地标跟踪的时间改进机制的时间模式。四个基准数据库的实验结果证明了我们方法的优越性。
Although heatmap regression is considered a state-of-the-art method to locate facial landmarks, it suffers from huge spatial complexity and is prone to quantization error. To address this, we propose a novel attentive one-dimensional heatmap regression method for facial landmark localization. First, we predict two groups of 1D heatmaps to represent the marginal distributions of the x and y coordinates. These 1D heatmaps reduce spatial complexity significantly compared to current heatmap regression methods, which use 2D heatmaps to represent the joint distributions of x and y coordinates. With much lower spatial complexity, the proposed method can output high-resolution 1D heatmaps despite limited GPU memory, significantly alleviating the quantization error. Second, a co-attention mechanism is adopted to model the inherent spatial patterns existing in x and y coordinates, and therefore the joint distributions on the x and y axes are also captured. Third, based on the 1D heatmap structures, we propose a facial landmark detector capturing spatial patterns for landmark detection on an image; and a tracker further capturing temporal patterns with a temporal refinement mechanism for landmark tracking. Experimental results on four benchmark databases demonstrate the superiority of our method.