论文标题

平面图的宏观网络循环

Macroscopic network circulation for planar graphs

论文作者

Ariaei, Fariba, Askarzadeh, Zahra, Chen, Yongxin, Georgiou, Tryphon T.

论文摘要

针对适当定义功能的网络的分析通常集中在捕获所需功能的子网的分区上。相关概念中的主要是一个两部分,是经典的cheeger不平等的基础,并突出显示了限制网络各个部分之间可访问性的收缩(瓶颈)。本工作的目的类似,目的是引入一个新的最大全球循环概念,并探索三个分区,以揭示网络的这种宏观特征。在此,图循环是由传输网络和图形上的概率流(马尔可夫链)激励的。我们的目标是量化网络流量的大规模失衡,并描述介导这样的全球特征的关键部分。当我们在一般环境中介绍并提出这些概念时,在本文中,我们只能解决平面图的情况。我们解释说,可以识别标量电势以封装循环的概念,与平面向量场卷曲的情况相似。除了平面图以外,在一般情况下,确定全球循环的问题目前仍然是组合问题。

The analysis of networks, aimed at suitably defined functionality, often focuses on partitions into subnetworks that capture desired features. Chief among the relevant concepts is a 2-partition, that underlies the classical Cheeger inequality, and highlights a constriction (bottleneck) that limits accessibility between the respective parts of the network. In a similar spirit, the purpose of the present work is to introduce a new concept of maximal global circulation and to explore 3-partitions that expose this type of macroscopic feature of networks. Herein, graph circulation is motivated by transportation networks and probabilistic flows (Markov chains) on graphs. Our goal is to quantify the large-scale imbalance of network flows and delineate key parts that mediate such global features. While we introduce and propose these notions in a general setting, in this paper, we only work out the case of planar graphs. We explain that a scalar potential can be identified to encapsulate the concept of circulation, quite similarly as in the case of the curl of planar vector fields. Beyond planar graphs, in the general case, the problem to determine global circulation remains at present a combinatorial problem.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源