论文标题

$ \ ell^p $ - 具有有限支持的函子的函子

The $\ell^p$-metrization of functors with finite supports

论文作者

Banakh, T., Brydun, V., Karchevska, L., Zarichnyi, M.

论文摘要

令$ p \在[1,\ infty] $和$ f:\ mathbf {set} \ to \ mathbf {set} $中是一个有限支持的函数$ \ mathbf {set set} $。给定一个非空的度量空间$(x,d_x)$,我们在函数空间$ fx $上介绍距离$ d^p_ {fx} $,是最大的距离,以至于每$ n \ in \ mathbb n $和$ n $和$ a \ in fn $ in fn $ in fn $ in Map $ x^n \ to fx $ x^n \ to fx $ f x $ f x $ f \ f \ r.ap ff \ ryap ff \ ryap ff(amap ff ff \ ryap ff(a MapSto ff(and Map) $ \ ell^p $ -metric $ d^p_ {x^n} $ on $ x^n $。我们证明,当且仅当函数$ f $保留单例时,距离$ d^p_ {fx} $是一个伪计; $ d^p_ {fx} $如果$ f $保留单例,并且以下条件之一保留:(1)公制空间$(x,d_x)$ is lipschitz newnected,(2)$ p = 1 $,(3)函数$ f $ f $具有有限f $ f $ f $ f $ preserves Supports支持。我们证明,对于任何Lipschitz地图$ f:(x,d_x)\ to(y,d_y)$之间的$ ff:(fx,d^p_ {fx})\ to(fy,d^p_ {fy}) \ Mathrm {Lip}(f)$。如果函子$ f $是一个有限度(并且保留支持),则$ f $保留均匀连续的功能,粗糙的功能,粗糙的等价,渐近lipschitz函数,准等法(和连续功能)。对于许多维函数,我们证明公式$ \ dim f^px \ le \ mathrm {deg}(f)(f)\ cdot \ dim x $。使用Injextive信封,我们引入了一个修改$ \ check d^p_ {fx} $的距离$ d^p_ {fx} $的$ d^p_ {fx})$,在类别中$ \ mathbf {dist} $的距离空间保留Lipschitz地图和度量空间之间的异构体。

Let $p\in[1,\infty]$ and $F:\mathbf{Set}\to\mathbf{Set}$ be a functor with finite supports in the category $\mathbf{Set}$ of sets. Given a non-empty metric space $(X,d_X)$, we introduce the distance $d^p_{FX}$ on the functor-space $FX$ as the largest distance such that for every $n\in\mathbb N$ and $a\in Fn$ the map $X^n\to FX$, $f\mapsto Ff(a)$, is non-expanding with respect to the $\ell^p$-metric $d^p_{X^n}$ on $X^n$. We prove that the distance $d^p_{FX}$ is a pseudometric if and only if the functor $F$ preserves singletons; $d^p_{FX}$ is a metric if $F$ preserves singletons and one of the following conditions holds: (1) the metric space $(X,d_X)$ is Lipschitz disconnected, (2) $p=1$, (3) the functor $F$ has finite degree, (4) $F$ preserves supports. We prove that for any Lipschitz map $f:(X,d_X)\to (Y,d_Y)$ between metric spaces the map $Ff:(FX,d^p_{FX})\to (FY,d^p_{FY})$ is Lipschitz with Lipschitz constant $\mathrm{Lip}(Ff)\le \mathrm{Lip}(f)$. If the functor $F$ is finitary, has finite degree (and preserves supports), then $F$ preserves uniformly continuous function, coarse functions, coarse equivalences, asymptotically Lipschitz functions, quasi-isometries (and continuous functions). For many dimension functions we prove the formula $\dim F^pX\le\mathrm{deg}(F)\cdot\dim X$. Using injective envelopes, we introduce a modification $\check d^p_{FX}$ of the distance $d^p_{FX}$ and prove that the functor $\check F^p:\mathbf{Dist}\to\mathbf{Dist}$, $\check F^p:(X,d_X)\mapsto (FX,\check d^p_{FX})$, in the category $\mathbf{Dist}$ of distance spaces preserves Lipschitz maps and isometries between metric spaces.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源