论文标题
在总二项式数据的双变量荟萃分析中,使用副群模型在总级别的双变量荟萃分析中
Use of copula to model within-study association in bivariate meta-analysis of binomial data at the aggregate level a Bayesian approach and application to surrogate endpoint evaluation
论文作者
论文摘要
双变量荟萃分析提供了一个有用的框架,用于结合相关研究的信息,并已用于将临床研究的证据结合起来,以评估两个结果的治疗效率。它也被用来研究对替代终点的治疗效应和最终结果之间的替代模式。与最终结果相比,可以使用替代端点在药物开发中起着重要作用,并预测临床益处或伤害。标准的双变量荟萃分析方法模拟观察到的对替代物和最终结果的治疗效果,并在研究中和研究之间共同使用双变量正态分布。对于二项式数据,可以使用对数比值比量表的正常近似。但是,当事件的比例接近一个或零时,该方法可能会导致偏见结果,从而影响替代端点的验证。在本文中,我们探讨了以原始二项式量表建模的两个结果。首先,我们提出了一种使用独立二项式可能性的方法来对避免观察到的治疗效果的研究内变异性进行建模。但是,该方法忽略了研究中的关联。为了克服这个问题,我们提出了一种使用二项式边缘的双变量副群的方法,该方法允许该模型解释研究内的关联。我们将这些方法应用于慢性髓样白血病中的一个说明性例子,以研究完全细胞遗传学反应(CCY)和无事件生存(EFS)之间的替代关系。
Bivariate meta-analysis provides a useful framework for combining information across related studies and has been utilised to combine evidence from clinical studies to evaluate treatment efficacy on two outcomes. It has also been used to investigate surrogacy patterns between treatment effects on the surrogate endpoint and the final outcome. Surrogate endpoints play an important role in drug development when they can be used to measure treatment effect early compared to the final outcome and to predict clinical benefit or harm. The standard bivariate meta-analytic approach models the observed treatment effects on the surrogate and the final outcome outcomes jointly, at both the within-study and between-studies levels, using a bivariate normal distribution. For binomial data, a normal approximation on log odds ratio scale can be used. However, this method may lead to biased results when the proportions of events are close to one or zero, affecting the validation of surrogate endpoints. In this paper, we explore modelling the two outcomes on the original binomial scale. Firstly, we present a method that uses independent binomial likelihoods to model the within-study variability avoiding to approximate the observed treatment effects. However, the method ignores the within-study association. To overcome this issue, we propose a method using a bivariate copula with binomial marginals, which allows the model to account for the within-study association. We applied the methods to an illustrative example in chronic myeloid leukemia to investigate the surrogate relationship between complete cytogenetic response (CCyR) and event-free-survival (EFS).