论文标题
FECAM:使用铁电的通用紧凑型数字和模拟内容可寻址记忆
FeCAM: A Universal Compact Digital and Analog Content Addressable Memory Using Ferroelectric
论文作者
论文摘要
铁电场效应晶体管(FEFET)正在积极研究其他非挥发性记忆(NVM)的内存计算(IMC)的潜力。内容可寻址记忆(CAM)是IMC的一种形式,它在给定输入查询的内存数组上并行搜索对匹配的条目进行了并行搜索。 CAM被广泛用于涉及模式匹配和搜索功能的以数据为中心的应用程序。为了适应不断扩展的数据,诉诸于模拟凸轮以提高记忆密度是有吸引力的。但是,如今,基于标准CMO或新兴的非易失性记忆(例如电阻存储设备)的数字凸轮设计已经在面积,功率和成本罚款时具有挑战性。因此,由于添加的细胞成分,使用这些技术实现模拟凸轮可能非常昂贵。因此,我们首次提出了基于通用的紧凑型FEFET凸轮设计FECAM,同时在数字和模拟域中启用了搜索和存储功能。通过利用FEFET的多级细胞(MLC)状态,FECAM可以在数字或模拟域中存储和搜索输入。我们执行提出的粪便的设备电路共同设计,并使用实验校准的FEFET模型验证其功能和性能。电路级别的仿真结果表明,粪便可以存储连续匹配范围,也可以在单个CAM单元格中编码3位数据。与现有的基于数字CMOS的CAM方法相比,发现模拟/数字模式的FECAM分别将记忆密度提高22.4倍和能源节省8.6/3.2倍。在与CAM相关的应用程序中,我们的评估表明,与常规CMOS CAM相比,粪便可以在区域/搜索能量中节省60.5倍/23.1倍。
Ferroelectric field effect transistors (FeFETs) are being actively investigated with the potential for in-memory computing (IMC) over other non-volatile memories (NVMs). Content Addressable Memories (CAMs) are a form of IMC that performs parallel searches for matched entries over a memory array for a given input query. CAMs are widely used for data-centric applications that involve pattern matching and search functionality. To accommodate the ever expanding data, it is attractive to resort to analog CAM for memory density improvement. However, the digital CAM design nowadays based on standard CMOS or emerging nonvolatile memories (e.g., resistive storage devices) is already challenging due to area, power, and cost penalties. Thus, it can be extremely expensive to achieve analog CAM with those technologies due to added cell components. As such, we propose, for the first time, a universal compact FeFET based CAM design, FeCAM, with search and storage functionality enabled in digital and analog domain simultaneously. By exploiting the multi-level-cell (MLC) states of FeFET, FeCAM can store and search inputs in either digital or analog domain. We perform a device-circuit co-design of the proposed FeCAM and validate its functionality and performance using an experimentally calibrated FeFET model. Circuit level simulation results demonstrate that FeCAM can either store continuous matching ranges or encode 3-bit data in a single CAM cell. When compared with the existing digital CMOS based CAM approaches, FeCAM is found to improve both memory density by 22.4X and energy saving by 8.6/3.2X for analog/digital modes, respectively. In the CAM-related application, our evaluations show that FeCAM can achieve 60.5X/23.1X saving in area/search energy compared with conventional CMOS based CAMs.