论文标题
通过电场驱动的陷阱电荷迁移,拓扑绝缘体中的非本地化学电势调制
Non-local Chemical Potential Modulation in Topological Insulators Via Electric Field Driven Trapped Charge Migration
论文作者
论文摘要
拓扑绝缘子(TIS)具有具有狄拉克分散和螺旋旋质质地的异常表面状态,并在旋转和量子计算中具有很高的潜力。对这些材料中化学势的控制具有挑战性,但对于实现备受追求的外来物理学,包括有效的自旋生成1,2,Majorana Fermions3-5和激子冷凝6,7。在这里,我们报告了一种简单有效的方法,该方法可以原位调节单晶BI2-XSBXSE3纳米容器的化学潜力,其幅度明显大于传统的静电门。与设备通道平行的电场可以将化学电势转移到通道内外的狄拉克点上。我们将这种非本地可逆的化学潜力的可逆调节归因于缺陷状态之间的电场诱导的电荷跳跃,进一步由光电流映射支持。我们的方法使工程化学势分布在TIS中,并为研究这些材料中的电荷和复合颗粒的基本运输机制提供了巨大的机会。
Topological insulators (TIs) host unusual surface states with Dirac dispersion and helical spin texture and hold high potentials for novel applications in spintronics and quantum computing. Control of the chemical potential in these materials is challenging but crucial to realizing the hotly pursued exotic physics, including efficient spin generation1,2, Majorana Fermions3-5, and exciton condensation6,7. Here we report a simple and effective method that can in-situ tune the chemical potential of single-crystal Bi2-xSbxSe3 nanoribbons, with a magnitude significantly larger than traditional electrostatic gating. An electric field parallel to a device channel can shift the chemical potential across the Dirac point, both inside and outside the channel. We attribute this non-local reversible modulation of chemical potential to electric-field-induced charge hopping among defect states, further supported by photocurrent mapping. Our approach enables engineering chemical potential distributions in TIs and opens up tremendous opportunities for investigating fundamental transport mechanisms of charge and composite particles in these materials.