论文标题
确定性位移凸电潜在平均野外游戏的主方程的全球适应性
Global well-posedness of Master equations for deterministic displacement convex potential mean field games
论文作者
论文摘要
该手稿为潜在的平均现场游戏$ Master \方程式$构建全球解决方案。该研究涉及一类Lagrangians和初始数据功能,这些功能是$ noversment \ convex $,因此,可能与所谓的$单调$函数类别进行二分法,在文献中广泛考虑。我们在潜在平均野外游戏中为标量和矢量主方程构建解决方案时,当基础空间是整个空间$ \ mathbb {r}^d $时,它不是紧凑的。
This manuscript constructs global in time solutions to the $master\ equations$ for potential Mean Field Games. The study concerns a class of Lagrangians and initial data functions, which are $displacement\ convex$ and so, it may be in dichotomy with the class of so--called $monotone$ functions, widely considered in the literature. We construct solutions to both the scalar and vectorial master equations in potential Mean Field Games, when the underlying space is the whole space $\mathbb{R}^d$ and so, it is not compact.