论文标题

预计的均匀RICCI流量和三等形 - 萨默斯旗歧管

The projected homogeneous Ricci flow and three-isotropy-summands flag manifolds

论文作者

Grama, Lino, Martins, Ricardo M., Patrão, Mauro, Seco, Lucas, Sperança, Llohann D.

论文摘要

RICCI流由汉密尔顿引入,并在多年来获得其重要性。特别重要的是流动的限制行为及其对称性。考虑到这一点,我们提出了具有自然紧凑特性的同质RICCI流动的新型归一化。此外,我们还提出了同质空间的Gromov-Hausdorff极限的特征。 结果,我们介绍了三异型 - 萨默德标志歧管的同质RICCI流动的详细图片:相位肖像,景点的盆地,共轭类和崩溃现象。此外,我们对上述流量线的可能的Gromov-Hausdorff极限进行了完整分类。

The Ricci flow was introduced by Hamilton and gained its importance through the years. Of special importance is the limiting behavior of the flow and its symmetry properties. Taking this into account, we present a novel normalization for the homogeneous Ricci flow with natural compactness properties. In addition, we present a characterization for Gromov-Hausdorff limits of homogeneous spaces. As a result, we present a detailed picture of the homogeneous Ricci flow for three-isotropy-summands flag manifolds: phase portraits, basins of attractions, conjugation classes and collapsing phenomena. Moreover, we achieve a full classification of the possible Gromov-Hausdorff limits of the aforementioned lines of flow.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源