论文标题
从$ \ mathbb {p}^1 $带有两个标记的点到$ \ mathbb {p}^1 \ times \ times \ times \ mathbb {p}^1 $的旋转构造和元素映射的模量空间。
Toric Construction and Chow Ring of Moduli Space of Quasi Maps from $\mathbb{P}^1$ with Two Marked Points to $\mathbb{P}^1 \times \mathbb{P}^1$
论文作者
论文摘要
在本文中,我们介绍了$ \ mathbb {p}^1 $的模量构造,并在$ \ mathbb {p}^1 $中介绍了$ \ m athbb {p}^1 \ times \ times \ mathbb {p}^1 $,这是Jinzenji首先提出的,这是Jinzenji和iT at Compact Orbifold的。我们还确定其盘子环,并在某些较低程度的情况下计算其庞加莱多项式。
In this paper, we present explicit toric construction of moduli space of quasi maps from $\mathbb{P}^1$ with two marked points to $\mathbb{P}^1 \times \mathbb{P}^1$, which was first proposed by Jinzenji and prove that it is a compact orbifold. We also determine its Chow ring and compute its Poincaré polynomial for some lower degree cases.