论文标题
固定的3个manifold中结属的计算复杂性
The computational complexity of knot genus in a fixed 3-manifold
论文作者
论文摘要
我们表明,确定在固定封闭的可定向3维歧管范围中的结的问题最多是$ g $的属表面。这回答了2002年Agol,Hass和Thurston的一个问题。此前,这是由第一作者的作品以理性同源性3-Spheres而闻名的。
We show that the problem of deciding whether a knot in a fixed closed orientable 3-dimensional manifold bounds a surface of genus at most $g$ is in co-NP. This answers a question of Agol, Hass, and Thurston in 2002. Previously, this was known for rational homology 3-spheres, by the work of the first author.