论文标题

流动性模式如何驱动疾病传播:使用公共交通乘客卡旅行数据进行案例研究

How mobility patterns drive disease spread: A case study using public transit passenger card travel data

论文作者

Shoghri, Ahmad El, Liebig, Jessica, Gardner, Lauren, Jurdak, Raja, Kanhere, Salil

论文摘要

传染病爆发对人类健康构成了全球威胁,被认为是主要的医疗挑战。疾病快速空间传播的主要驱动力是人类流动性。特别是,个体的旅行模式在很大程度上决定了他们的传播潜力。这些旅行行为可以使用新颖的基于位置的数据源(例如智能旅行卡,社交媒体等)来捕获和建模。先前的研究表明,无法以最常访问的地点为特征的人更越来越快地传播疾病。但是,这些研究基于具有位置不确定性的GPS数据和移动呼叫记录,并且不会捕获明确的联系。目前尚不清楚大规模现实世界传输网络是否得出相同的结论。在本文中,我们研究了流动性模式如何影响疾病在大规模的公共交通网络中的经验数据痕迹网络中传播。与以前的发现相反,我们的结果表明,具有最常访问的位置并且通常旅行较大距离的流动性模式的个体会带来最高的风险。

Outbreaks of infectious diseases present a global threat to human health and are considered a major health-care challenge. One major driver for the rapid spatial spread of diseases is human mobility. In particular, the travel patterns of individuals determine their spreading potential to a great extent. These travel behaviors can be captured and modelled using novel location-based data sources, e.g., smart travel cards, social media, etc. Previous studies have shown that individuals who cannot be characterized by their most frequently visited locations spread diseases farther and faster; however, these studies are based on GPS data and mobile call records which have position uncertainty and do not capture explicit contacts. It is unclear if the same conclusions hold for large scale real-world transport networks. In this paper, we investigate how mobility patterns impact disease spread in a large-scale public transit network of empirical data traces. In contrast to previous findings, our results reveal that individuals with mobility patterns characterized by their most frequently visited locations and who typically travel large distances pose the highest spreading risk.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源