论文标题

二进制GOLAY扩散序列和芦苇毛刺代码,用于无上行赠款Noma

Binary Golay Spreading Sequences and Reed-Muller Codes for Uplink Grant-Free NOMA

论文作者

Yu, Nam Yul

论文摘要

非正交多访问(NOMA)是机器类型通信(MTC)大规模连通性的新兴技术。在代码域NOMA中,非正交扩展序列唯一地分配给了所有设备,在该设备中,主动设备尝试无授予的系统访问系统。在本文中,我们研究了一组用户特异性的,非正交的,二进制扩散序列,用于无上行赠款Noma。基于Golay互补序列,每个扩展序列提供了最多3 dB的峰与平均功率比(PAPR),用于多载波传输。利用与芦苇毛刺代码的理论连接,我们进行了概率分析,以搜索Golay序列的排列设置,该序列为扩展矩阵提供了理论上界限的低相干性。仿真结果证实,通过扩散序列传输多载体信号的PAPR明显低于随机双极,高斯和Zadoff-Chu(ZC)序列的PAPR。同样,由于相干性较低,基于压缩感应(CS)的联合通道估计(CE)和多源检测(MUD)的性能使用扩散序列的性能与其他序列相比优越或可比其他。与ZC序列不同,无论序列长度如何,二进制Golay扩展序列都只有两个阶段,可以适用于低成本的MTC设备。

Non-orthogonal multiple access (NOMA) is an emerging technology for massive connectivity in machine-type communications (MTC). In code-domain NOMA, non-orthogonal spreading sequences are uniquely assigned to all devices, where active ones attempt a grant-free access to a system. In this paper, we study a set of user-specific, non-orthogonal, binary spreading sequences for uplink grant-free NOMA. Based on Golay complementary sequences, each spreading sequence provides the peak-to-average power ratio (PAPR) of at most 3 dB for multicarrier transmission. Exploiting the theoretical connection to Reed-Muller codes, we conduct a probabilistic analysis to search for a permutation set for Golay sequences, which presents theoretically bounded low coherence for the spreading matrix. Simulation results confirm that the PAPR of transmitted multicarrier signals via the spreading sequences is significantly lower than those for random bipolar, Gaussian, and Zadoff-Chu (ZC) sequences. Also, thanks to the low coherence, the performance of compressed sensing (CS) based joint channel estimation (CE) and multiuser detection (MUD) using the spreading sequences turns out to be superior or comparable to those for the other ones. Unlike ZC sequences, the binary Golay spreading sequences have only two phases regardless of the sequence length, which can be suitable for low cost MTC devices.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源