论文标题

属性2VEC:通过多过滤GCN嵌入深网络

Attribute2vec: Deep Network Embedding Through Multi-Filtering GCN

论文作者

Wanyan, Tingyi, Zhang, Chenwei, Azad, Ariful, Liang, Xiaomin, Li, Daifeng, Ding, Ying

论文摘要

我们提出了用于网络嵌入任务的多过滤图卷积神经网络(GCN)框架。它使用多个本地GCN过滤器来在每个传播层中进行特征提取。我们显示,这种方法可以捕获节点特征的不同重要方面,而不是现有的基于属性嵌入的方法。我们还表明,通过多过过滤的GCN方法,当训练数据受到限制时,我们可以针对基线方法实现重大改进。我们还执行了许多经验实验,并证明了对单个过滤器使用多个过滤器以及对链接预测和节点分类任务的大多数现有网络嵌入方法的好处。

We present a multi-filtering Graph Convolution Neural Network (GCN) framework for network embedding task. It uses multiple local GCN filters to do feature extraction in every propagation layer. We show this approach could capture different important aspects of node features against the existing attribute embedding based method. We also show that with multi-filtering GCN approach, we can achieve significant improvement against baseline methods when training data is limited. We also perform many empirical experiments and demonstrate the benefit of using multiple filters against single filter as well as most current existing network embedding methods for both the link prediction and node classification tasks.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源