论文标题
Illustristng集群中的磁盘星系的命运
The fate of disk galaxies in IllustrisTNG clusters
论文作者
论文摘要
我们研究了TNG50和TNG100中的圆盘星系的出色形态演变,从Illarteristng模拟套件中运行。我们选择质量的卫星$ 10^{9.7} \ leq m _ {*,z = 0}/\ text {m} _ {\ odot} \ leq 10^{11.6} $居住在群体中m _ {\ text {200c,z = 0}}/\ text {m} _ {\ odot} \ leq 10^{14.6} $ at $ z = 0 $,并且根据运动学形态指示器(循环分数)是增强的光盘。这些是从积聚的时间到$ z = 0 $的,并与在积聚时匹配的中央星系的对照样本进行了比较。大多数簇光盘被$ z = 0 $变为非证券,与控制盘形成鲜明对比,其中大量的分数在同一时间尺度上仍然是盘状。簇光盘变得无圆,伴随着气体去除和恒星形成淬火,暗物质的丧失和几乎没有生长或失去恒星质量的损失。相比之下,控制盘也会发生变化,同时也失去气体质量和淬火,但在暗物质和恒星质量中显着生长。大多数集群卫星都会在类似的时间尺度上改变形态,无论恒星质量如何,积聚后的$ \ sim0.5-4 $ gyr。经历了更多和近乎周围段落的群集光盘显示形态上最大的变化。在所有情况下,形态变化都需要存在引力扰动,以将恒星轨道驱动到非粘膜构型,以及去除气/加热以防止通过持续的恒星形成补充盘子。对于簇盘,扰动是在洋流的冲动潮汐震动,而不是外盘恒星材料的潮汐剥离,而对于控制盘,合并和AGN反馈的组合似乎是形态转化的关键驱动力。
We study the stellar morphological evolution of disc galaxies within clusters in the TNG50 and TNG100 runs from the IllustrisTNG simulation suite. We select satellites of masses $10^{9.7} \leq M_{*,z=0}/\text{M}_{\odot} \leq 10^{11.6}$ residing in clusters of masses $10^{14} \lesssim M_{\text{200c,z=0}}/\text{M}_{\odot} \leq 10^{14.6}$ at $z=0$ and that were discs at accretion according to a kinematic morphology indicator (the circularity fraction). These are traced from the time of accretion to $z=0$ and compared to a control sample of central galaxies mass-matched at accretion. Most cluster discs become non-discy by $z=0$, in stark contrast with the control discs, of which a significant fraction remains discy over the same timescales. Cluster discs become non-discy accompanied by gas removal and star formation quenching, loss of dark matter and little growth or a loss of stellar mass. In contrast, control discs transform while also losing gas mass and quenching, but growing significantly in dark matter and stellar mass. Most cluster satellites change morphologies on similar timescales regardless of stellar mass, in $\sim0.5-4$ Gyr after accretion. Cluster discs that experienced more numerous and closer pericentric passages show the largest change in morphology. Morphological change in all cases requires the presence of a gravitational perturbation to drive stellar orbits to non-discy configurations, along with gas removal/heating to prevent replenishment of the disc through continued star-formation. For cluster discs, the perturbation is impulsive tidal shocking at pericentres and not tidal stripping of outer disc stellar material, whereas for control discs, a combination of mergers and AGN feedback appears to be the key driving force behind morphological transformations.