论文标题

从分散的统计数据中产生国家规模的互动网络

Generate Country-Scale Networks of Interaction from Scattered Statistics

论文作者

Thiriot, Samuel, Kant, Jean-Daniel

论文摘要

通常,通过网络来定义代理商人群之间的相互作用结构。大多数基于代理的模型对该网络都非常敏感,因此模拟结果的相关性直接取决于该网络的描述能力。在研究大量人群中的社会动态时,无法收集该网络,并且是由旨在适合社交网络一般特性的算法产生的。但是,更精确的数据可以以社会人口统计学研究,人口普查或社会学研究的形式以国家规模获得。这些“分散的统计数据”提供了丰富的信息,尤其是有关代理的属性,绑定代理的类似特性和分支机构的信息。在本文中,我们提出了一种通用方法,以将这些分散的统计数据与贝叶斯网络结合在一起。我们解释了如何产生异质代理商的种群,以及如何通过使用分散的统计数据和社会选择过程的知识来建立联系。通过为肯尼亚乡村的互动网络产生相互作用网络,其中包括家族结构,同事和友谊受到限制,从而说明了该方法。

It is common to define the structure of interactions among a population of agents by a network. Most of agent-based models were shown highly sensitive to that network, so the relevance of simulation results directely depends on the descriptive power of that network. When studying social dynamics in large populations, that network cannot be collected, and is rather generated by algorithms which aim to fit general properties of social networks. However, more precise data is available at a country scale in the form of socio-demographic studies, census or sociological studies. These "scattered statistics" provide rich information, especially on agents' attributes, similar properties of tied agents and affiliations. In this paper, we propose a generic methodology to bring up together these scattered statistics with bayesian networks. We explain how to generate a population of heterogeneous agents, and how to create links by using both scattered statistics and knowledge on social selection processes. The methodology is illustrated by generating an interaction network for rural Kenya which includes familial structure, colleagues and friendship constrained given field studies and statistics.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源