论文标题

确认的COVID案件数量的幂律分布

Power-law distribution in the number of confirmed COVID-19 cases

论文作者

Blasius, Bernd

论文摘要

Covid-19是由冠状病毒SARS-COV-2引起的一种新兴的呼吸道传染病。它于2019年12月上旬在中国武汉(Wuhan)首次报道,并在整个世界各地的大流行中传播三个月之内。在这里,我们研究了大流行的时间过程中的宏观流行学模式。我们计算了全球和美国县的确认的COVID-19案件和死亡人数的分布,并表明这两种分布都遵循五个数量级的截断性驱动法。我们能够将这种缩放行为的起源解释为双尺度过程:国家之间病毒的大规模传播以及每个国家内病例数的小规模积累。假设两个量表上的指数增长,幂律的关键指数取决于大规模和小规模增长率的比率。我们在简单的元群模型中在数值模拟中证实了这一理论,描述了相互联系的国家网络中的流行病扩散。我们的理论给出了一种机械解释,为什么大多数covid-19案例发生在一些震中中,至少在爆发的初始阶段。评估一个简单的双尺度模型如何预测流行病的早期传播,尽管国家之间存在巨大的对比,但可以帮助识别关键的时间和空间尺度,以减轻未来的流行病威胁。

COVID-19 is an emerging respiratory infectious disease caused by the coronavirus SARS-CoV-2. It was first reported on in early December 2019 in Wuhan, China and within three month spread as a pandemic around the whole globe. Here, we study macro-epidemiological patterns along the time course of the pandemic. We compute the distribution of confirmed COVID-19 cases and deaths for countries worldwide and for counties in the US, and show that both distributions follow a truncated power-law over five orders of magnitude. We are able to explain the origin of this scaling behavior as a dual-scale process: the large-scale spread of the virus between countries and the small-scale accumulation of case numbers within each country. Assuming exponential growth on both scales, the critical exponent of the power-law is determined by the ratio of large-scale to small-scale growth rates. We confirm this theory in numerical simulations in a simple meta-population model, describing the epidemic spread in a network of interconnected countries. Our theory gives a mechanistic explanation why most COVID-19 cases occurred within a few epicenters, at least in the initial phase of the outbreak. Assessing how well a simple dual-scale model predicts the early spread of epidemics, despite the huge contrasts between countries, could help identify critical temporal and spatial scales of response in which to mitigate future epidemic threats.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源