论文标题
伯格曼空间上的乘法操作员通过正确的全态图
Multiplication operator on the Bergman space by a proper holomorphic map
论文作者
论文摘要
假设$ f:=(f_1,\ ldots,f_d):ω_1\toΩ_2$是$ \ mathbb c^d的两个有界域之间的适当的全态图。在本文中,我们在本文中,我们找到了一个非客气的最小值减少关节的乘以乘以乘以乘以(tuple)$ ______________(ld),伯格曼空间上的m_ {f_d})$ a^2(ω_2)。$
Suppose that $f := (f_1,\ldots,f_d):Ω_1\toΩ_2$ is a proper holomorphic map between two bounded domains in $\mathbb C^d.$ In this paper, we find a non-trivial minimal joint reducing subspace for the multiplication operator (tuple) $M_f=(M_{f_1},\ldots, M_{f_d})$ on the Bergman space $\mathbb A^2(Ω_1)$, say $\mathcal M.$ We further show that the restriction of $(M_{f_1},\ldots,M_{f_d})$ to $\mathcal M$ is unitarily equivalent to Bergman operator on $\mathbb A^2(Ω_2).$